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Abstract. Within the framework of the second-order Rayleigh-Schrödinger perturbation theory, we inves-
tigate the effects of the interaction of the electron and longitudinal-optical phonons in two-dimensional
semiconductive quantum dots with respect to a general potential. We propose a simple expression for
the ground state energy, and compare it with those obtained by Landau-Pekar strong coupling theory.
It is shown both analytically and numerically that the results obtained from the second-order Rayleigh-
Schrödinger perturbation theory could be better than those from Landau-Pekar strong coupling theory
when the coupling constant is sufficiently small. Moreover, some interesting problems, such as polarons in
quasi-one-dimensional quantum wires, and quasi-zero-dimensional asymmetric or symmetric quantum dots
can be easily discussed only by taking different limits. After the numerical calculations, we find that there
exists a simple dimensional scaling and symmetry relation for the ground state polaron energy. Further-
more, we apply our results to some weak-coupling polar semiconductors such as GaAs, CdS. It is shown
that the polaronic effects are found to be quiet appreciable if the confinement lengths and smaller than a
few nanometers.

PACS. 71.38.+i Polarons and electron phonon interactions – 63.20.Kr Phonon electron and phonon phonon
interactions

1 Introduction

With the recent development in micro-fabrication tech-
nology, such as molecular-beam and lithographic depo-
sition, it has created a variety of opportunities for the
fabrication of synthetic semiconductor structures with re-
duced dimensionality [1–8]. The effects of electron opti-
cal phonon interaction on the energy levels, effective mass
and the polaronic properties of low dimensional confined
electrons have attached much attention for their potential
applications and a lot of new interesting phenomenon [9–
27]. It is shown in these investigations that polarons in
low dimensional quantum structures are remarkably dif-
ferent from those in bulk material due to the presence of
different confining potentials, which may cause the differ-
ent confinement for the carriers motion. However, many
of them [10–13,23,24] are always refrained from including
the coupling of the electron to the confined phonon modes
as well as bulk-phonon approximation, thus they can give
a clear view of the bulk-phonon effects. Moreover, the
electron-phonon coupling is rather weak in actual material
of interest, say, GaAs (α = 0.07), then some theory like
LP strong-coupling theory etc., are unsuitable for dealing
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with such problems. Because Rayleigh-Schrödinger per-
turbation theory (RSPT) were usually applied efficiently
in weak-coupling field. Then it would be helpful for a bet-
ter understanding of the role of electron-LO-phonon in-
teraction in quantum dots, if we devote RSPT to handle
such problems. Meanwhile, RSPT can always show the
simple form of the electron-phonon interaction and de-
duce some simple closed-form analytical expressions for
the polaronic correction to the ground state energy. For
example, Degani and Farias [32] have ever used RSPT to
calculate the polaronic correction to the self-energy and
the effective mass of the electron confined in a symmetric
parabolic quantum dot. In addition, Mukhopadhyay and
Chatterjee [11] have derived an analytical expression for
the second-order RSPT correction to the self-energy and
obtained a scaling relation for the ground state energy of
an electron in multi-dimensional symmetric quantum dot.
Thus, the second-order RSPT is imperative to provided
some qualitative insight into the investigation on polarons
in confined media made from polar crystals.

The purpose of this paper is to give a more ad-
vanced investigation of the properties for two-dimensional
(2D) asymmetric quantum structures. We consider here
the same model polaron problem in a three-dimensional
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(3D) quantum structure, but the electrons are much more
strongly confined in one direction than in the other two
directions. As an interesting theoretical model [37–39],
we assume that the confining potential in a single quan-
tum dot is parabolic and different in different directions
of x and y. Alternatively, we point out here that there
exist some simple expression for the polaron energy cor-
rection corresponding to the different quantum structures.
We can unify all these cases in a three-dimensional figure.
Moreover, we may compare them with some results ob-
tained from experiment and LP strong-coupling theory,
and then we will give a clear view of solely the low dimen-
sion effects of electron optical phonon interaction within
the framework of the second-order RSPT. We provided a
broad interpolating overview to the two-dimensional po-
laron problem consisting of an electron perfectly confined
in a boundary with symmetric or asymmetric parabolic
potential.

This paper is organized as follow. In Section 2, we de-
rive the energy expressions for polarons in partly symmet-
ric and entirely asymmetric potential within the frame-
work of the second-order RSPT and compare those from
LP strong-coupling theory. In Section 3, we present our
numerical results over reasonably wide ranges of the con-
finement potential, compare for some materials to other
important energy scales, such as the exciton binding en-
ergy. At last, we give out a summary of this paper.

2 Formulation

We start with three-dimensional Fröhlich Hamilton for an
electron moving in an asymmetric low dimensional quan-
tum structure and interacting with the LO phonons.
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where all vectors are three dimensional and the units have
been chosen such as ~ = m = ω0 = 1 (Feynman units),
ω0, the optical phonon frequency, is assumed to be di-
mensionless, r refers to the position vector of the elec-
tron, ωx = ωhx/ω0, ωy = ωhy/ω0, ωz = ωhz/ω0, ωhx, ωhy
and ωhz, respectively, measure the confining strength of
the parabolic potential for directions x, y and z, a+

q and
aq are the creation and annihilation operators for a LO
phonon of wave vector q, and ξq for the 3D systems is
always has [34]
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where ν is the volume of the 3D quantum structure and
α is the electron-phonon coupling constant. In addition,
for most low dimensional quantum structure, the value of
α is small, so the weak coupling approximation should be
valid.

Then performing the second-order RSPT correction to
the ground-state (GS) electron self-energy for the pola-
ronic interaction, we have
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Hn(ωx) being the Hermite polynomial of order n. This
expression is just as same as which occurred in the vari-
ational ground state energy of Coulomb impurity-bound
polaron in the Feynman-Haken path integral calculation
with a harmonic oscillator effective trial action [28–31].

Using the transformation

1
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We can easily perform the summation over jx, jy and jz
in (3) respectively. Then using∑

q

exp [iq · (r− r′)]

q2
=

v

4π
·

1

|r− r′|
, (9)

One can integrate with respect to the electron position
vectors r and r′ transforming these vectors into two new
variables u and v as u = 1

2 (r + r′), v = 1
2 (r− r′).

Then the polaron self-energy correction can be show
as follows
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where
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If the electrons are much more strongly confined in one
direction (taken as the z direction) than in the other two
directions, what we discussed is a very interesting theo-
retical model, namely the 2D asymmetric quantum dot.
When we take the limit ωz → ∞, then λz → ∞. So we
can deal with the integral for electron coordinates uz and
vz firstly, by introducing the following transformation
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and then integrating with respect to the remain electron
coordinate ux, uy, vx, and vy. Finally we have
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where
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The properties of 2D asymmetric quantum dots in
which only the motion of the electrons in the x-y
plane is taken into account, can be described perfectly
by the above equation. More interestingly, from equa-
tion (12) only by selecting the different terms, we can
discuss all kinds of cases included in 2D semiconduc-
tor quantum structures. There, we can find the fur-
ther results of this integral equation are determined
by the relative scale between ωx

[
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. Meanwhile, since the increase of x is
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is just cor-

responding to that between the relative values of ωx and
ωy. If we change the relative values of ωx and ωy, some
different forms would be obtained. In general, there ex-
ist three different types of low-dimensional semiconductor
quantum structures, such as the symmetric and asymmet-
ric quantum dots, quantum wires, included in the case of
ωx = ωy, ωx > ωy.

With ωx = ωy = ω, we might get the second-order
RSPT correction for the polaron self-energy like following

form by equation (12),

∆E = −
π

2
·
α
√
ω
·

Γ
(

1
ω

)
Γ
(

1
ω

+ 1
2

) , (13)

selecting l = 1/
√
ω and rewriting the above equation, we

might have
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l is the dimensionless confinement length and given by

l = l0
r0

, where l0 and r0 are defined as l0 = (~/(mωh))
1/2

and r0 = (~/(mω0))
1/2

. It is just the case of 2D sym-
metric quantum dots, discussed by Mukhopadhyay, Chat-
terjee [11], and the others [33,34]. Thus, the results are
naturally as same as theirs.

On the other hand, it may be noted here that if the
confinement of direction x is larger than that of direction
y, we may obtain the case of 2D asymmetric quantum dots
as follows.
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the first type elliptic integral. This equation obviously
yields the results of 2D quantum dots with asymmet-
ric parabolic potential as well, where the confinement for
direction x is stronger than that of direction y. Subse-
quently, we will discuss the other important cases, which
are deduced by taking some different limits.

From the expression for 2D asymmetric quantum dots
(Eq. (12)), we find, under ωz → ∞, if the confine-
ment of direction y is in the weak confinement limit (i.e.
ωy → 0), the above equation will obviously yield the
case of asymmetric quantum wires. Here we have included
the following limits into: limωy→0 ωy
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1 + coth 1

2ωyt
)

= 2
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One can easily show the form of polaron GS energy cor-
rection as follows

∆E = −
α
√
π

∞∫
0

dt ·
e−t
√
t
· F (x′), (16)

where x′ = 2/
[
t · ωx

(
1 + coth 1

2ωxt
)]

. This formula is just
related to the case of quasi-one dimensional asymmetric
quantum wires and it is sure to show the nature of this
system.

Next, we will continue to discuss another case corre-
sponding to the different limit of equation (13). After in-
vestigating all kinds of cases that possibly exist, we might
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find: if we include the weak-confinement for direction x
as same as the another direction y, the form then corre-
sponds to the ground state energy of pure 2D free polaron
(∆E = −π2α). This result is also similar to what reduced
by LLP variational calculations [35,36], Feynman path
integral method [28–31] and second-order perturbative
theory [23] etc.

According to the above discussion, we would find some-
thing interesting that: if the effective confinement poten-
tial satisfy: ωx → ω, ωy →∞, the corresponding model is
1D polaron, which is always diverging. It just corresponds
to the divergence of the interaction coefficients [33]:

lim
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2 = lim
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Γ
[
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2 (N − 1)

]
2N−(3/2)π(N−1)/2

vNqN−1
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so, it usually needed to be dealt with by the renormaliza-
tion of the coupling constant α.

Moreover, for comparison, we will study these struc-
tures within LP varitional theory as well. The strong-
coupling polarons in quantum dots can also be investi-
gated by LP variational scheme [34]. Alternatively, we
here proceed to give a more concise representation of this
scheme. The adiabatic polaron ground-state can be given
through following product ansatz∣∣. . . 〉 = φ(r)
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where
∣∣0〉 is the unperturbed zero phonon state satisfying

for all k, λx and λy are the variational parameters, as
f(k), f∗(k), they will be determined variationally.

To find the optimal fit to f(k), and f∗(k), we should
minimize the expectation value of the Hamiltonian (1) in
the above trial state 〈. . . |H| . . . 〉, which has the following
functional form
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Inserting these back into equation (19), we may have:
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It is also expected that the second-order RSPT can pro-
duce good results for polarons in quantum dots with weak-
coupling strength and confining potential. These will be
demonstrated in the numerical calculations performed in
the next section.

Fig. 1. Polaronic corrections −∆E (Feynman units) to the GS
energy of an electron in parabolic two dimensional symmetric
quantum dots and asymmetric quantum wires as a function of
confinement length l and lx (Feynman units).

3 Numerical results and discussions

In order to calculate the polaronic energy correction, we
should have the ground-state energy in the absence of
electron phonon interaction. It is known that the ground-
state energy to harmonic Hamiltonian H = P2 + 1

2ω
2r2

in N dimensions is given exactly by Ehm = N
2 ω. Hence,

the polaronic correction to the ground-state energy in 2D
quantum wires and 2D asymmetric quantum dots reads
∆E = ERSPT− 1

2ωx, ∆E = ERSPT− 1
2ωx−

1
2ωy. As usual,

the dimensionless confinement length of the semiconduc-
tor quantum structures is defined as lx = 1√

ωx
, ly = 1√

ωy
.

Now, we will present some numerical results for the po-
laron in semiconductor quantum structures for arbitrary
coupling constants and broad ranges of the confinement
length of these structures by means of equations (12–16).

In Figure 1, we plot the polaronic energy correction
(−∆E) to the ground state energy in both 2D symmet-
ric quantum dots and quantum wires as a function of the
confinement length l and lx. Just as those gotten from
experiment, it is clearly shown that the polaronic en-
ergy correction of quantum wires and quantum dots in-
crease systematically with decreasing size and to in-
crease in going from wires to dots of the same size.
At the same time, the polaronic effect is substantially
strengthened with contracting the confining length in both
structures. The electron-optical phonon interaction has
a pronounced effect on the electronic energy when the
confinement length l (lx) is sufficiently small. When the
size of these two quantum systems increases, the pola-
ronic correction increases and asymptotically assumes a
constant value (∆E = −π2α), as stated by many other
authors [11,23,28–31,35,36].

In Figure 2, we plot the polaronic correction (−∆E)
to the ground state energy of 2D asymmetric quantum
dots as a function of the confinement length lx and ly in
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Fig. 2. Polaronic corrections −∆E (Feynman units) to the
GS energy of an electron in parabolic 2D dimensional asym-
metric semiconductive quantum systems as a function of the
confinement length lx and ly (Feynman units).

Fig. 3. Polaronic corrections −∆E (in mev) to the GS energy
of an electron in GaAs and CdS quantum dots with parabolic
confinement in 2D, as a function of the confinement length l
(Feynman units).

a 3D plot. It is observed that the electron-optical phonon
interaction in asymmetric system has a more pronounced
effect on the electronic energy than that of symmetric sys-
tem, and the effect may be more remarkable with the in-
creasing of asymmetry. Furthermore, the polaronic cor-
rection for electronic energy will become larger when the
dot size is sufficiently small. Like the other two quantum
series discussed above, the polaronic correction increased
and asymptotically assumed a constant value as the size of
dot increases. It also dedicates the essential features of 2D
asymmetric semiconductive quantum systems. More inter-
estingly, we can also observe the above two cases in this
curved surface i.e. the curves at which the curved surface
intersect with lx = 0 (or ly = 0) plane and lx = ly plane
are respectively corresponding to the results for asymmet-
ric quantum wires and 2D symmetric quantum dots.

Table 1. Some parameters of CdS, and GaAs (ωLO is in unit
of meV and m in unit of bare electron mass).

Materials m ωLO α

CdS 0.155 38.26 0.527
GaAs 0.066 36.7 0.068

In Figure 3, we plot the variation of the polaron self-
energy by the second-order RSPT and LP theory as a
function of the confinement length for a few selected quan-
tum dots of weak-coupling polar semiconductors such as
GaAs, CdS. The material parameters used in the calcula-
tion are given in Table 1. It is evident from the figure that
the polaronic effects increase quite considerably when the
dot sizes are made smaller than a few nanometers. Figure 3
also shows that the results gotten from the second-order
RSPT are far more efficient than those from LP theory,
especially when the confinement length becomes larger.
Then we can say that the weak-coupling approximation
is justified for these low-dimensional structures. At large
radii, however, the exact calculation shows that the mag-
nitude of the shift of the ground state energy of GaAs
(6 meV) is a little larger than that of exciton binding en-
ergy (< 5 meV) [40,41], then the shift of the ground state
energy has to be considered in real materials as well. All
of these results are very helpful in order to better under-
stand the relevance and magnitude of the predicted effects
for the actual structure.

4 Conclusions

In conclusion, we have investigated the polaron effect in
the 2D asymmetric, symmetric quantum dots, and quasi-
one dimensional quantum wires systems by the RSPT
treatment. After considering all possible existed cases in
2D quantum structures, we can get the generality of such
systems and the difference among these structures. Then,
we unified them in a three-dimensional configuration. Af-
ter the numerical calculations, it would be pointed out
that for the same value of the electron-phonon-coupling
constant α and the confinement length l, the polaronic ef-
fect is enhanced with lowering dimensionality and higher
asymmetry.

It is shown that there exists some important relation
between the polaronic effect and the size of the confine-
ment. We can derive the relationship among these system
from Figures 1 to 3 as follows. The polaronic effect of 2D
symmetric quantum dots is weaker than asymmetric 2D-
quantum dots, but stronger than that of quantum wires.
With the size of confinement length and the symmetry in-
creasing, the polaron self-energy correction for asymmet-
ric 2D quantum dots, 2D symmetric quantum dots, and
quasi-one dimensional quantum wires will asymptotically
assume a same constant as large as −π2α. Meanwhile, we
also can dedicate that the weak-coupling approximation
is justified for real low-dimensional material structures,
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since the results gotten from the second-order RSPT are
far more efficient than those from LP theory. Moreover,
the exact calculation shows that the magnitude of the shift
of the ground state energy of GaAs is a little larger than
that of exciton binding energy.

Finally, it should be pointed out that the present the-
ory is also suitable for the other more complicated prob-
lems. These extensions are in progress.

This work was supported by the National Natural Science
Foundation of China under grant n◦ 19804009.
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